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Abstract
Graph database management systems (GDBMSs) have
become essential in data-driven applications. To ensure
the reliability and security of these systems, solutions for
fuzzing their graph query languages (GQL) have been
implemented. However, the most common GQL, Cypher,
introduces complicated data flow and state, which cre-
ates difficulty in generating complicated but still valid
queries. As a result, previous results have been unable
to incorporate these language constructs when generat-
ing queries, causing bugs triggered by these features to
remain undetected.

In this paper, we propose a novel technique for gener-
ating complicated and valid Cypher queries with compli-
cated data flow and data dependencies. We achieve this
by keeping track of what we call the query context and
the abstract graph summary. These hold information
about variables in scope and an approximation of the
graph at a certain point in the query, respectively. We use
on-the-fly state manipulation to modify this information
during query generation, thereby ensuring that clauses
within the query can use this state information to gener-
ate complicated queries. We implement this approach as
a fully automatic fuzzer, Dinkel. Dinkel is evaluated on
three of the most popular GDBMSs (Neo4j, RedisGraph
and Apache AGE). In our evaluation, Dinkel outperforms
other state-of-the-art Cypher fuzzers, creating queries
which are difficult for previous approaches to generate
and finds 53 previously unknown bugs.

1 Introduction

Graph Database management systems (GDBMSs) play
an essential role in today’s interconnected, data-driven
lives. Their practicality in financial fraud detection [7,10],
networking [8, 9] and other data-driven applications [3,
11] has led 75% of the Fortune 100 and all of North
America’s top 20 banks to make use of the currently
most popular [6] GDBMS, Neo4j [15].

GDBMSs are rapidly evolving, complex systems and
thus error-prone. Their usage in critical fields could lead
to serious consequences if a bad actor were to abuse a
previously unknown bug. An attacker may run a Denial of
Service attack by repeatedly crashing the system [13,17]
or leak confidential data [16].

Previous approaches [28,30] have attempted to fuzz
GDBMSs through automatic Cypher query generation.
However, they do not account for some characteristic
Cypher features which results in a lower complexity of
generated queries. Different from declarative languages
like SQL [25], Cypher queries have the capability of mak-
ing changes to the database state during query execution
which are visible in subsequent clauses [4]. Neglecting

MERGE (x)<-[:A]-(x)<-[:A]-(x)<-[y:A]->(x)
DELETE y
CREATE (x)<-[:B]-()
DELETE y

Figure 1: A query that causes RedisGraph v2.10.11
to encounter an untrue assertion. Highlighted are data
dependencies within the query.

this behaviour results in the query processor not hav-
ing to handle complicated data dependencies, resulting
in more shallow fuzzing. This poses the difficult chal-
lenge of correctly maintaining usable state information,
which does not impact query validity while enabling the
fuzzer to generate more complex queries with data depen-
dencies between clauses. When compared to imperative
languages like C [29], Cypher has more ways of manipu-
lating state with information which can be referred to in
later parts of a statement [4]. This poses the problem of
capturing this information and incorporating it in the
generation of later clauses, thereby forcing the GDBMS
to handle this intricate data flow.

During the execution of a Cypher query, two origins
of state exist. These consist of the current database
schema and the query context, holding declared vari-
ables. The schema holds references to nodes and their
labels, relationships and their type, as well as properties
for both of them. Keeping track of the query context
entails correctly storing all variable identifiers in scope
as well as their associated type. The database schema
can be approximated during generation by storing a set
of employed node labels and relationship types, as well
as all used property identifiers and their exact type. In-
exact information leads to ineffective testing. Missing
node labels and relationship types lead to fewer data
dependencies and reduced query complexity while type
errors may arise from incorrect variables and properties,
reducing query validity.

To increase the complexity of generated queries, we
perform state tracking by using on-the-fly state ma-
nipulation. When generating a query, we incrementally
generate an abstract syntax tree (AST), where every
node represents a Cypher clause or expression. With
on-the-fly state manipulation, every such AST node gets
granted the ability to update the global state during
its generation. This state information then gets used
by subsequent clauses through referencing declared vari-
ables or graph elements, resulting in data dependencies
and thereby increasing query complexity. Figure 1 shows
a query which causes RedisGraph to encounter an un-
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1 WITH [] AS n0 ORDER BY null
2 CALL {
3 WITH [] AS n1 ORDER BY null
4 UNWIND [0] AS x
5 UNWIND [x] AS n2
6 RETURN 0 AS n3
7 }
8 FOREACH ( n4 IN null | MERGE () )

Figure 2: A complex query that triggers an exception
bug in Neo4j 5.6.0.

true assertion. Every line connecting two elements in
this query represents a data dependency. As previous
approaches neglect state information, they do not have
the ability to generate such a query and missed this bug.

Query complexity is enhanced by letting the AST grow
during generation. Instead of generating an AST skeleton
and then filling out the gaps, this approach instead gen-
erates nodes which then randomly pick between further
nodes that may follow it. This method ensures syntactic
correctness while enabling theoretically infinite query
sizes. In addition to that, we use a modular approach
when defining AST nodes, through which we are able
to easily expand our tool to target all language features.
The query in Figure 2 shows such a complex query. Previ-
ous approaches have limited coverage of the OpenCypher
language, thereby they aren’t able to generate this query,
containing complex clauses like FOREACH and the CALL
subquery which possess non-trivial data flow.

Based on our approach, we implemented Dinkel, an
open-source Cypher fuzzer producing complex and valid
queries using stateful generation. We have evaluated
our tool against three popular GDBMSs (Neo4j [20],
RedisGraph [21] and Apache AGE [19]) and found 53
unique, previously unknown bugs. The bugs consist of 17
crashes and 36 exception bugs. So far,33 have been fixed
and a further 11 of these bugs have been confirmed.

Overall, we make the following technical contributions:

• A novel approach to Cypher query generation, en-
abling fuzzing of GDBMSs using complex queries
containing intertwined, data-dependent clauses.
With a framework allowing for easy target do-
main expansion using declarative drop-ins for
implementation-specific language structures.

• Based on our approach, we implement Dinkel, an
easy-to-adapt Cypher fuzzer written in Go.

• We evaluate Dinkel on three widely-used GDBMSs,
including Neo4j, RedisGraph and Apache AGE in
which Dinkel finds 53 unique bugs. We compare
Dinkel to previous approaches of Cypher query gen-
eration and evaluate it based on the generated

:Person
{name:"Alex"}

:OWNS
{since:"2020"}

:Vehicle
{type:"car"}

Labels

Properties

Figure 3: A property graph modelling a person named
Alex owning a car.

queries’ complexity and data dependence among
clauses.

2 Background

This section introduces the background knowledge re-
quired to understand our approach and design decisions.

2.1 GDBMS
A GDBMS is a database system operating on property
graphs, storing interconnected data using nodes con-
nected via edges [14]. Nodes and edges, so-called graph
entities, may hold additional data through labels and
properties. Labels are used to group and classify ele-
ments, whereas properties are made up of key-value pairs,
providing additional information about an element.

Figure 3 shows an example of such a property graph. It
models a person named Alex owning a vehicle of the type
car since 2020. The leftmost node, representing Alex, has
the label Person and a property with name name and
value Alex. This node is connected to another node via
an edge of type OWNS. On this edge, a property with a
key of since and value of 2020 is held. This edge goes
from the node representing Alex to a node representing
a car. This car node possesses the label Vehicle and
houses a property named type with value car.

GDBMSs are optimized to operate on large-scale
graphs by traversing and modifying them according to
rules given by a user’s query.

Since graphs often represent continuously developing
or strongly interconnected data, it is natural for graph
databases to demand few to no schema definitions. How-
ever, graph databases often allow defining rules for data
integrity through uniqueness or existence constraints.
This is notably different from relational databases, which
require a schema to be rigidly defined before it may be
populated with data [2].

2



CREATE (alex:Person)-[:LENT]->(bob:Person)-[:OWES]->(alex)

:Person :Person

:LENT

:OWES

Figure 4: A simple Cypher query and the graph it
creates.

2.2 Cypher
While currently there is no set standard for graph query
languages, Cypher is a promising candidate. Its usage in
the most popular GDBMS, Neo4j [5], and their efforts
in establishing the OpenCypher [12] standard makes it
stand above other graph query languages.

Cypher makes use of declarative path-pattern match-
ing and combines this with clauses operating on the
query context and graph state. Path patterns are used in
queries to reference graph structures and are constructed
using a syntax reminiscent of ASCII art. Figure 4 con-
tains a simple Cypher query and the graph it creates.
The query creates a node of type Person, which gets
assigned to the variable alex, represented in the graph
with the dashed node. This variable is only referenceable
in the query itself and thereby its name does not appear
in the graph. Alex gets connected to the node bob, the
dotted node in the graph, via an edge of type LENT. The
query then creates another node from bob back to alex
of type OWES.

Cypher clauses can be put into two main categories
consisting of write and read clauses. Write clauses change
the graph data by creating or modifying it. Read clauses,
meanwhile, query the graph to extract information with-
out modifying it.

Different from traditional query languages like
SQL [25], Cypher does not differentiate between data dec-
laration (DDL), manipulation (DML) and query (DQL)
language. Instead, a Cypher query can create, read and
modify data in a single statement, thereby allowing state-
ments of procedural nature and non-trivial query state
manipulation.

The Cypher query in Figure 6 is making use of this
behaviour. It first matches a graph, the Cypher equivalent
of querying. The next clause then creates a graph pattern,
while the last clause modifies the property of one of the
nodes just created.

A Cypher statement is constructed by chaining op-
tional read clauses, followed by a return or a chain of
write clauses. Cypher statements themselves can further
be chained using the WITH clause, after which read

:A

:A :A

:A

:A :A:A

:B

1. 2. 3-4.

Figure 5: The state after processing each line of the
query in Figure 1.

clauses are syntactically correct again. Using the WITH
clause thus allows write clauses to be followed by more
read clauses.

With this procedural approach to query construction,
data flow and state visibility are not straightforward.
During query execution, clauses can observe all writes
performed by previous instructions. The query state can
thus change drastically during query processing, with
state information captured at the start of the query
possibly not matching the one present in subsequent
clauses.

Figure 5 shows the database state after processing each
line of the query depicted in Figure 1. The displayed
graph is the one visible at the end of processing a line,
thereby the one the subsequent clause operates on. Notice
how the first DELETE clause has the ability to delete the
edge created in the previous MERGE clause, causing the
graph in the second graph to have an edge missing when
compared to the first graph. This behaviour is what gifts
Cypher its imperative nature while also complicating a
query’s data flow and state.

2.3 Existing Approach Limitations
Existing approaches do not capture the same level of
state information and can thus not reach a high com-
plexity in their generated queries.

GDSmith [30] restricts itself in query complexity by
separating read- and write statements as well as by defin-
ing the graph in advance, thus not incorporating changes
to the schema during query processing. Additionally, GD-
Smith only implements the core OpenCypher grammar,
which does not include more complex clauses required
by the OpenCypher specifications.

GDBMeter [28] intentionally restricts its query com-
plexity by focusing on finding bugs using predicate par-
titioning [31]. However, GDBMeter also misses bugs by
ignoring state information, thus not creating data depen-
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1 MATCH (a:Actor {name: "Tom Hanks"}) // Query
2 CREATE (a)-[:PLAYS_IN]->(b:Movie) // Create
3 SET b.title = "Forrest Gump" // Modify

Figure 6: A Cypher query reading, creating and modi-
fying data in a single statement.

dencies within its clauses.
These limitations have all been addressed in our ap-

proach and enabled us to find many bugs missed by
previous approaches.

3 Approach

3.1 Approach Overview

To address the limitation of state-independent queries,
we model the query state during generation and refer
back to this information later on. Through the query
state, we try to accurately capture data referenceable by
clauses and incorporate it in their generation, thereby
increasing query complexity.

On-the-fly state manipulation gets used to operate
on the query state model. It involves statically inferring
state information from clauses during generation. This
information then gets added to a global state, allowing
subsequent clauses to refer to information previously
created within the query.

3.2 Query State Modeling

We differentiate between two parts making up the query
state.

The first part contains the abstract graph summary,
which is an approximation of the graph stored in the
database, statically inferred during query generation.
This summary contains graph attributes referenced in
the query. We track all graph attributes, which are made
up of node labels, relationship types and properties with
their respective types.

The second part is the query context, which contains
variables in scope and their types. These variables can be
property variables with simple datatypes, or structural
variables, holding references to nodes or relationships.

An example state can be seen in Figure 7. The set of
variables makes up the query context, whereas the ab-
stract graph summary contains the labels and properties
sets. After the CREATE clause, the query context con-
tains the variables x and y, whereas the abstract graph
summary consists of the label A and property name n0.

1 // Vars Labels Props
2 WITH 0 AS x // {x} {} {}
3 CALL { //
4 WITH 1 AS y // {x,y} {} {}
5 CREATE (:A {n0:y}) // {x,y} {A} {n0}
6 } //
7 RETURN x // {x} {A} {n0}

Figure 7: How the tracked state changes throughout a
query. What is omitted from the figure is the additional
information attributed to these entities. The fuzzer would
hold additional information about the type of x and y,
the fact that the origin of the A label is a node as well
as the type and origin of the n0 property.

3.3 On-The-Fly State Manipulation
Since state changes throughout a Cypher query, every
clause can have an effect on the abstract graph summary
and query context. To accurately keep track of these
changes, we store the reference to a global state with ev-
ery AST node. This state is thereby freely accessible and
modifiable by the node during its generation. Depicted
in Figure 7 is the tracked state during a query. The sets
on the right side of the figure show what the state holds
and how it is modified on-the-fly. More specifically, the
sets containing the names of tracked variables, labels
and properties are shown. Notice how after the CALL
subquery, the query context shrinks, as the variable de-
fined within the subquery goes out of scope. Meanwhile,
the abstract graph summary remains the same. This
results in later parts of the query not incorrectly refer-
encing variables outside the current scope, but possibly
creating data dependencies through further references
of previously defined labels and properties.

AST nodes incorporate this state information to guide
their generation. With this approach, every time a node
uses state information in its generation, a data depen-
dency gets created. Figure 8 shows an example of how
these dependencies get created. Arrows pointing to the
global schema populate it with data, while arrows point-
ing away from it depict the incorporation of state infor-
mation in the query. Every connecting line below the
query represents a data dependency. The depicted query
generates two variables, x and y, which get stored in the
query context. The abstract graph summary gets popu-
lated by the label A and the property name n0. Notice
how every data incorporation, or down-pointing arrow
in the figure, induces a data dependency.

However, some AST nodes have to modify the state
after generation to enforce a correct state. For example,
the CALL clause in Figure 7 has to ensure that the
variable y in the subquery is not visible outside its body.
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WITH 0 AS x MATCH (y:A{n0:0}) SET y.n0 = x

Figure 8: Data coupling within a query through global
state.

Referencing this variable outside the subquery is seman-
tically incorrect. Because of this, the variable must be
removed from the schema after the CALL subquery’s AST
got generated. This issue is addressed by implementing
a method for relevant AST nodes which gets called after
its generation is finished, which has the ability to modify
the state.

4 Implementation

4.1 Architecture
Our tool’s core logic can be split into two parts, the
scheduler and the query generator. Figure 9 illustrates
how these parts interact. The query generator’s job is to
generate Cypher queries by building and then translating
query ASTs. The scheduler meanwhile is responsible
for fetching queries from the query generator which it
then sends to the database under test before analyzing
the result. A fuzzing run starts off with the scheduler
requesting a query from the query generator given a seed
and the OpenCypher implementation under test. After
receiving a query from the query generator, the scheduler
then sends this query to the target GDBMS and waits
for the result. The result then gets analyzed and if it
indicates that a bug has been triggered, the scheduler
generates and outputs a bug report.

4.2 Query Generation
The query generator creates a query by recursively gener-
ating the AST associated with the root node and a given
schema. An example AST being generated is shown in
Figure 10. The query generator asks the AST root node
to return its child nodes, which then further get gener-
ated. The AST gets traversed in a pre-order approach by
the query generator, generating a node’s leftmost child
and all its descendants before moving on to the next
child.

4.3 AST Node Metamodel
The node interface is a struct implementing the Generate
method. This Generate method takes in a seed and

scheduler

5 process result

query generator

2 Generate &
translate query

AST

request query given seed
& implementation

1

return query

3

4
run
query

6
Write bug
report if bug
was found

Figure 9: How the scheduler, query generator and target
GDBMS interact during fuzzing.

schema, which the node uses to guide its generation.
The method returns a list of further AST nodes, which
represent its children in the abstract syntax tree.

Nodes additionally implement the TemplateString
method, which returns a format string. The format string
contains string verbs, which act as the locations where
the node’s children get inserted during translation.

4.4 Model Adaptation
While the targets tested using our tool focus on ad-
hering to the OpenCypher specifications, there are still
differences between their implementations. These differ-
ences can range from simple functions having different
signatures, over containing unimplemented clauses, to
introducing completely new clauses. Ignoring these char-
acteristics causes a larger amount of invalid queries and
worse target domain coverage.

Simple differences, like unimplemented types and dif-
ferent function signatures, get addressed by having every
implementation define a generation config. This config
holds a list of disallowed OpenCypher functions, addi-
tional implementation-specific functions as well as unim-
plemented property types. Relevant AST nodes use this
config and incorporate its information during their gen-
eration.

For more difficult-to-address discrepancies, like differ-
ing clause semantics, we employ declarative AST node
drop-ins. Every implementation defines a drop-in map
with AST node types as the keys and a drop-in function
as a value. This drop-in function accepts an AST node,
the current schema as well as seed and returns a new
AST node. When the query generator encounters an AST
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1. 2.

3. 4.

Node Being Generated Generated Node

Children of Generated Node Ungenerated Node

Figure 10: How the query generator generates and tra-
verses a query’s AST.

node matching a key from the drop-in map, it replaces
it with the returned node from the function associated
with the encountered node. Instead of translating the
original node, the query generator now generates the
drop-in instead. Figure 11 shows how these drop-ins
adapt the query AST. The dashed nodes are ones which
would have been generated, were no drop-ins defined.
However, since the implementation under test defined
a drop-in for the node type of x, the query generator
replaces x with its associated drop-in. This causes the
query generator to continue AST generation from this
drop-in, coloured in purple, instead of x.

4.5 Query Reduction
In order not to overburden developers with large queries
in bug reports, we reduced all bug-triggering statements
to a minimal, viable example.

This was automated by having the fuzzer regenerate
the original query’s AST and then delete nodes, thereby
essentially replacing their translation with an empty
string. After every such deletion, the AST is translated to
a Cypher query again and sent to the database, checking
if the same bug still triggers. If the bug triggers, the
modified AST is used for further reduction, otherwise,
the fuzzer falls back to the previous AST.

Additionally, AST nodes themselves are able to im-
plement a method returning another node for reduction,
thereby instead of deleting the node, replacing it with

x

...

dropIn(x)

: Original AST
: Adapted AST

Figure 11: An illustrative example showing how an
implementation drop-in can adapt the statement’s AST.
Dashed elements represent AST nodes which would have
been generated, were the drop-in not defined.

the given alternative. This approach is effective for nodes
whose absence in the query would be a syntactic error.
For example, a UNION clause could, instead of just delet-
ing one of its subclauses, which would be a syntactic
error, return just one subclause instead.

With this approach, bug-triggering queries could be
efficiently reduced, only requiring little manual work
afterwards to minimize the final queries. This manual
work consisted of removing a few clauses missed by the
reducer or improving the report’s readability by replac-
ing constants (e.g. a random integer to a simple zero),
removing whitespace and renaming variables.

5 Evaluation

5.1 Setup
We ran our tests on a machine running Ubuntu 20.04
on a 64-Core AMD EPYC 7742 processor running at
2.25GHz with 256GB of RAM.

We evaluated our tool against Neo4j version 5.6.0,
which was the newest version when Dinkel started being
developed.

In this section, we differentiate between three types
of queries.

Valid queries are queries for which the GDBMS
successfully produces a result.

Invalid queries are queries which cause an exception
indicating a syntactic or semantic error to be raised.

Bug-triggering queries are all queries crashing the
target system and exception-raising queries which do not
indicate an invalid query.

Queries were set to time out after 15 seconds and
were forcefully killed after 30 seconds, as execution could
get stuck even after the 15-second timeout if the target
instance was running out of memory.
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GDBMS Exceptions Crashes Total
Neo4j 25 0 25
RedisGraph 3 14 17
Apache AGE 8 3 11
Total 36 17 53

Table 1: The distribution of exceptions and crashes
among the tested GDBMSs. The last row holds the sum
of all previous rows.

We excluded queries resulting in timeouts from our
evaluation, as we could not test whether they trigger
a bug or contain linguistic errors. On average, queries
resulting in a timeout made up about 1.5% of all queries.
These timeouts were mainly caused by iterating over
immensely large arrays or slowing down the target system
by using most of its assigned memory.

5.2 Bug Detection Novelty

In total, Dinkel found 53 unique, previously unknown
bugs. The bugs consist of 17 crashes and 36 exception
bugs. So far, 11 of these bugs have been confirmed and
33 have been fixed. Table 1 shows how these numbers
are distributed among specific GDBMSs.

Of these listed bugs, two were regression bugs found
on the release dates of their respective version. One
of them affected Neo4j 5.6.0, whereas the second one
affected 5.7.0. Our tool can thereby efficiently be used
by GDBMS developers for finding recently introduced
bugs before they reach their clients.

We analyse the two representative bugs depicted in
Figure 1 and Figure 2 to explain how these bugs could
only be found using Dinkel’s novel techniques.

The data dependencies required to trigger the bug
listed in Figure 1 prevented previous approaches from
finding it. Dinkel is the first Cypher fuzzer with the
ability to create such dynamic data dependencies span-
ning multiple clauses. GDSmith [30], while capturing
and reusing variables, does so only for read clauses and
cannot create new dependencies between graph elements
without directly referencing the variable that captures
them. Because of this, the dependencies induced by ref-
erencing the newly created label A could not have been
created by GDSmith.

The level of query complexity required to trigger the
bug in Figure 2 cannot be reached by other Cypher
fuzzers. Previous approaches are not able to capture
and incorporate the non-trivial dataflow and query state
present in the query. This kept them from generating
the employed clauses, like the CALL or FOREACH clause.

5.3 Runtime Testing Evaluation

We ran Dinkel against Neo4j 5.6.0 for 24 hours and
collected all generated queries. In this section, we sum-
marize the findings from this test run and explain some
obtained metrics.

5.3.1 Generated Query Validity

Of the generated queries, 87.5% were valid, while 12.5%
were invalid.

Query invalidity is caused by one or more of four
categories.

Arithmetic Exceptions. Since we do not know the
concrete values of most expressions in a query during run-
time, adhering to arithmetic constraints is not possible.
Queries can thereby fail due to arithmetic exceptions,
caused by numerical over- and underflow, divisions by
zero or similar edge cases.

OOM Exceptions. Similarly to arithmetic excep-
tions, it is impossible to predict the amount of memory
used by a query. Additionally, built-in methods return-
ing lists, for example, the range function, can blow up
memory usage drastically. Such an increase in memory
consumption causes an exception in the GDBMS, which
then terminates the query, causing an exception to be
raised in the client.

Invalid Grouping Keys in Aggregate Expres-
sions. Cypher provides the ability to apply aggregating
functions on values, such as SUM or COUNT. However,
queries containing such invocations may throw a seman-
tic exception due to the presence of implicit grouping
keys [1]. This means that for every such aggregation
function invocation, the query must explicitly state over
which values the function should group its expressions.
Adhering to this rule from the perspective of a fuzzer is
costly, difficult and may limit its target domain. Addi-
tionally, these exceptions only account for a fraction of
invalid queries, thereby not greatly impacting the fuzzer’s
efficiency.

Abstract Graph Summary Unsoundness. The
abstract graph summary only grows during query gener-
ation. When a graph element gets deleted, it still resides
in our tracked state. Referencing this element in some
updating clauses (e.g. CREATE and MERGE) causes an
exception to be raised, as the element no longer exists.
However, removing the ability to reference these elements
would lead to missed bugs. The query in Figure 1 for
example deletes the edge y twice, triggering a bug. This
query is semantically correct however, as deletion of a
non-existent element is a valid operation.
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Figure 12: Query sizes and data dependencies of reduced
bug-triggering queries.

5.3.2 Query Complexity

To convey the query complexity Dinkel can reach and
the complexity required to trigger bugs, we analyse the
complexity of queries gathered from the test run as well
as all the reduced bug-triggering queries found by Dinkel.

We measure a query’s complexity according to its data
dependencies and size. Data dependencies are calculated
by subtracting the number of times a symbol gets de-
fined from the number of times it appears in the query.
As Dinkel only ever defines a symbol once, this means
that data dependencies are just the amount of symbols
referenced minus 1.

For queries generated during the test run, the average
amount of data dependencies per query reached 41 with
an average query size of 1473 bytes.

We ran the same analysis for the 53 unique bugs found
by Dinkel. Query sizes and data dependencies for these
reduced queries are plotted in Figure 12.

Around half of all bugs require no data dependencies
to trigger, and the other half mainly require 1-2. Very
few, four, in this case, bugs trigger only if more than
three data dependencies are present. This result is to be
expected, following the Small Scope Hypothesis [22].

5.3.3 Bug-Triggering Feature Distribution

In order to determine which Cypher clauses were the
root cause for most bugs, we analysed their distribution
over all 53 bug-triggering queries generated by Dinkel.
Figure 13 displays this distribution.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Probability of Appearing

RETURN
MERGE

AS
MATCH
CREATE

WITH
UNWIND

CASE

Figure 13: Feature distribution of bug-triggering queries.

The data shows that the RETURN keyword is present in
most bug-triggering queries, appearing in roughly 60%
of them. This is unsurprising, as RETURN is required to
appear at the end of a query containing only reading
clauses, otherwise, the query would be syntactically in-
correct. MERGE and CREATE are the two clauses inducing
the creation of graph elements and could often be used in-
terchangeably in our specific queries while still triggering
the same bug. We can deduce from this that graph data
is often required to be present for bugs to trigger, The
remaining keywords mainly induce non-trivial dataflow
in the query, such as WITH, UWNIND and CASE, alluding
to the fact that bugs often appear when the database
system has to handle such flows.

5.4 Sensitivity Analysis
In order to see the impact different features had on the
fuzzer’s efficiency and metrics, we reran the evaluation
for modified versions of our tool.

We conducted three more test runs with the same setup
as before, but blocked certain features of the fuzzer:

• dinkel represents the original version, with all fea-
tures enabled.

• dinkel!ags had the Abstract Graph Summary fea-
ture disabled. Generated queries did thus not have
the ability to keep track of the graph summary, caus-
ing labels and properties to not get referenced after
their first appearance in a query.

• In dinkel!qc, we disabled the query context. Queries
generated by this version can thereby not reference
previously defined variables within the query.

• dinkel!qc,!ags had neither access to the query con-
text, nor the abstract graph summary. Thus, this
variant is unable to create queries with any data
dependencies, as the fuzzer had no access to a query
state.
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Version
Query
Count

Data
Dependencies

Bug
Count

dinkel 78’719 35.49 15
dinkel!ags 88’444 9.62 14
dinkel!qc 86’972 32.51 7
dinkel!qc,!ags 78’589 0 7

Table 2: The results of the sensitivity analysis.

Table 2 displays the results gathered from these test
runs, clearly showing that AGS has the biggest influence
on the average data dependency count. This is most likely
due to the fact that the elements AGS tracks, properties
and labels, are not subject to scope constrictions and
they can often appear chained together in large numbers.
An example of such a query displaying this can be seen
in Figure 14, where the graph pattern in the EXISTS
subquery contains two labels, namely B and C. Generated
queries can contain such label matches of much larger
size by chaining them, similarly with properties.

During the 24-hour test runs, AGS didn’t seem to have
a large effect on the amount of unique bugs found. This is
most likely due to the fact that bugs which require AGS
to trigger can take longer to generate, as they require
complex graph structures to trigger.

Take for example the bug-triggering query listed in
Figure 1, where QC and AGS work together to create
different data dependencies, ultimately triggering a bug.

Additionally, AGS has a larger effect on how data flow
occurs during the query execution, which may have a
larger effect on logic bugs, rather than exception bugs.
We believe this is the case, as AGS usually has less of
an effect on how a query is processed, but rather what
is being processed. This allows for exploiting mistakes
in data processing, but not in the runtime, which would
cause exceptions or crashes.

An example bug that could only be found using AGS
is listed in Figure 14. Running this query in Neo4j 5.8.0
raises an exception, stating that properties cannot be
accessed due to the relationship cursor being null. This
is unexpected, as the query is both syntactically and
semantically correct since nodes and relationships can
share property names. The query first creates a graph
pattern, where a node contains a property with a key
of x. This property then gets added to the AGS and
subsequently reused in the following EXISTS subquery.
Notice how originally, the property was registered in a
node, but referenced in an edge later. With AGS dis-
abled, Dinkel would have no possibility of capturing this
property and, by extension, induce the important data
dependency, thereby missing the bug.

The bug-triggering query displayed in Figure 15 can

1 MERGE ()-[:A]->({x:0})
2 RETURN EXISTS {
3 (:!(B&C))-[{x:0}]->()
4 }

Figure 14: A query that triggers an exception bug in
Neo4j 5.8.0.

1 MATCH (x)-->({n0:EXISTS {
2 WITH toBoolean(sum(0)) AS n1, x AS n2
3 RETURN 0
4 } })
5 RETURN 0

Figure 15: A query that triggers an exception bug in
Neo4j 5.8.0.

only be triggered if the query context is enabled. When
this query is executed, it results in an exception, com-
plaining that the x inside the EXISTS subquery is shad-
owing a variable of the same name. However, as the inner
x is simply referencing the previously defined one and
not overwriting it, this is unexpected and thus points to
a bug. This query could not be generated, were the query
context disabled. Notice the data dependency created
by the first node x being matched, which is later refer-
enced in the WITH clause within the EXISTS subquery.
The query context correctly captures the variable x and
keeps its scope when entering the subquery. If the query
context was disabled, this variable could not have been
referenced again, as there would be no internal record of
it.

5.5 Comparison
To better understand the novelty Dinkel brings to the
table, we analyse three exemplary bugs and determine
why they could not be found by previous approaches.

Case Study 1 : The query displayed in Figure 16
triggers a crash in RedisGraph v2.10.11. It contains
language features which induce a non-trivial query con-
text, such as the none predicate and list comprehension.
These complex clauses cannot be generated by previous
approaches due to limited domain coverage and their
inability to capture the non-trivial variable scopes. For
example, referencing n2 outside the list comprehension
or n1 outside the none predicate would be semantically
incorrect. Dinkel’s novel approach to clause generation
and query context capturing, however, allows for this
query to be generated, ultimately leading to a new bug
being found. Also, notice the two data dependencies
induced by x and y.

Case Study 2 : The query displayed in Figure 17 trig-
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1 CREATE x = ()-[y:A]->(),
2 ({ n0:none(
3 n1 IN [n2 IN [0] | x]
4 WHERE false)
5 })
6 MERGE ()<-[:B]-() ON CREATE SET y = {}

Figure 16: A query that causes RedisGraph v2.10.11 to
crash.

gers an unexpected exception in Neo4j 5.6.0, reporting
that the symbol x was not found. However, this query
is correct, with the two references to x being distinct,
thus no exception should be raised. This query contains
the FOREACH clause, which entails difficult-to-capture
data flow, with the variables defined within the body of
the FOREACH clause not being visible outside the clause.
Additionally, in order for the bug to trigger, the data
dependency induced by the A label is required. No pre-
vious approaches can capture this data flow and create
these data dependencies on-the-fly, leading this bug to
be missed by them.

6 Related Work

6.1 Fuzzing
Fuzzing is a technique for automated testing. It involves
randomly generating inputs for a program and observing
the program’s behaviour to check whether a bug has
been triggered. Fuzzing tools can be domain-specific
and target a specific domain [27,28,30–32], or they can
be general purpose and produce test cases for arbitrary
programs [18,26].

Using dinkel we employ fuzzing on GDBMSs using
the Cypher query language. Dinkel is thereby domain-
specific, focusing on generating Cypher queries with com-
plex to capture data flow and context changes.

Stateful Fuzzing uses state information to guide
fuzzing, with the aim of making automated testing
more exhaustive and efficient. Tools using stateful
fuzzing [23, 24] have shown this technique’s impact on
the exhaustiveness of testing as well as its efficiency.
RESTler [23], uses stateful fuzzing by inferring depen-
dencies between restful API calls. The tool managed
to find 38 bugs in two Microsoft services as well as
GitLab. Stateful Greybox Fuzzing [24] rely on state in-
formation to guide the fuzzing of network protocols. The
proposed technique automatically detects state variables
with which it creates a state map of explored states which
it then further uses to guide fuzzing. This stateful fuzzer
resulted in double the fuzzing efficiency when compared
to stateless greybox fuzzers and managed to find multiple

1 FOREACH ( n0 IN [] | CREATE (x) )
2 MERGE ()<-[x:A]-()<-[:A]->()

Figure 17: A query that triggers an exception bug in
Neo4j 5.6.0.

security vulnerabilities, resulting in 8 assigned CVEs.
To our knowledge, dinkel is the first GDBMS fuzzer

incorporating rich state information for generating com-
plex queries. We use static inference to keep track of
variables in scope and to approximate the generated
graph. Dinkel still achieves high query validity, due to
the semantics of the Cypher query language being more
lenient when referencing nonexistent graph elements.

6.2 DBMS Testing

RDBMS Testing focuses on testing relational
databases, which are databases operating on tables. Test-
ing can focus on finding queries triggering logic bugs,
finding security vulnerabilities and breaking invariants.
Previous work using stateful RDBMS fuzzing [27, 32]
has shown how such testing is crucial and powerful, find-
ing and disclosing several critical security vulnerabilities.
Squirrel [32] uses static inference to deduce state infor-
mation. However, around half of its generated queries
were invalid due to wrong state inferences stemming
from incorrect inferences. DynSQL [27] fetches the state
information directly from the database system before
generating another SQL statement. This ensures state
correctness, leading to a high query validity rate and
thereby higher fuzzing efficiency.

Since dinkel is not focused on testing RDBMSs, it
requires an adjusted approach and model to query gener-
ation, while still basing some core ideas on the previously
mentioned work.

GDBMS Testing, meanwhile, performs testing on
graph databases. Previous work [28,30] has shown the
necessity for this field, successfully finding bugs in tested
systems. GDSmith [30] focuses on testing the core gram-
mar of the Cypher query language, which results in a
smaller domain coverage. GDBMeter [28], meanwhile,
does not incorporate state information and intentionally
restricts its query domain by testing for logic bugs with
predicate partitioning.

Dinkel has a much broader domain coverage and en-
hances its queries using state information. It thereby taps
into the deeper and more complex logic of the systems
under test, causing more bugs to surface.
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7 Conclusion

In this paper, we introduce dinkel, a stateful Cypher
fuzzer. Dinkel employs on-the-fly state manipulation
and abstract graph summaries to generate complex and
valid queries with numerous data dependencies. We have
evaluated dinkel on the three most popular GDBMSs
using Cypher and were able to find 53 previously un-
known bugs. Additionally, we analyze two representative
bug-triggering queries found by dinkel which cannot be
generated by previous approaches.
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